Table I. Curie temperature T_c , $\Gamma \equiv \partial \ln T_c/\partial \ln V$, and \overline{T}_{max} , as calculated from Eq. (15) for $\partial \ln T_b/\partial \ln V = 0$, for various solid solutions of MnAs Sb1-x in the second-order region. | x(at.% As) | Tc | Γ | Ī _{max} | |------------|-----|------|------------------| | 0.00 | 572 | 2.38 | 1.206 | | 0.25 | 458 | 2.97 | 1.180 | | 0.50 | 375 | 3.63 | 1.157 | | 0.75 | 292 | 5.18 | 1.122 | | 0.80 | 247 | 6.20 | 1.106 | ## FIGURE CAPTIONS - Fig. 1 Magnetic transition temperatures of MnAs $_{\rm x}$ Sb $_{\rm 1-x}$ solid solutions. (O, after Sirota and Vasilev and x after Goodenough et al 5 .) - Fig. 2 A typical self-inductance versus temperature plot for the x = 0.9 solid solution. - Fig. 3 Concentration dependence of the FM to PM transition temperature (● present study, after Sirota and Vasilev 4). - Fig. 4 Concentration dependence of the initial pressure derivative of the FM to PM transition temperature. - Fig. 5 Temperature versus pressure magnetic phase diagram for MnAs and MnAs 0.9 Sb 0.1. - Fig. 6 A comparison of ∂ $T_c/\partial P$ versus T_c plots for various alloy systems. (O MnAs_xSb_{1-x}, \triangle Fe-Pt, \bigcirc Fe-Pd, and \bigcirc Fe-Ni). - Fig. 7 A comparison of the calculated and experimental dependence of T_c on bandwidth (— calculated, experimental).